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The reaction of 9,10-diiodo-9,10-dihydro-9,10-distannaan-
thracene with lithium naphthalenide (2.5 equiv.) or excess lithi-
um gave the 9,10-distannaanthracene dimer or the 9,10-distan-
naanthracene dianion. The formation of the latter was evidenced
by NMR spectral analysis and a trapping experiment.

Since the first synthesis of 9,9,10,10-tetraphenyl-9,10-dihy-
dro-9,10-disilaanthracene,1 studies on the synthesis, structures,
and reactions of 9,10-dihydro-9,10-disilaanthracene have been
developed.2 The corresponding germanium analogs, 9,10-dihy-
dro-9,10-digermaanthracenes, were also synthesized and charac-
terized.3 One of the most interesting features of 9,10-dihydro-
9,10-dimetallaanthracene derivatives is their utility as potential
precursors for metal-containing reactive species. Also of interest
is the conformation of their central six-membered ring. Very re-
cently, fascinating silicon-containing reactive species such as a
bis(silyl anion),4 relatively stable silyl radicals,5 and a 9-silaan-
thracene6 have been reported to be derived from 9,10-dihydro-
9,10-disilaanthracenes. As for tin analogs, we have recently re-
ported the first synthesis and structures of 9,10-dihydro-9,10-dis-
tannaanthracenes.7,8 In the course of our studies on the synthesis
of reactive species having a 9,10-distannanthracene skeleton, we
report herein the first synthesis of the 9,10-distannaanthracene
dimer as well as the 9,10-distannaanthracene dianion by the
reduction of 9,10-diiodo-9,10-dihydro-9,10-distannaanthracene.

Reaction of a trans/cis mixture ([trans]/[cis] > 10) of
9,10-diiodo-9,10-dihydro-9,10-distannaanthracene 19,10 (18mg,
0.026 mmol) with excess lithium (18mg, 2.61mmol) in THF
(2mL) at room temperature gave a deep red solution, suggesting
the formation of an anionic species. After treatment of the reac-
tion mixture with excess methyl iodide, 9,9,10,10-tetramethyl-
9,10-dihydro-9,10-distannaanthracene (2) was obtained in 83%
yield (Scheme 1). The formation of 2 could be reasonably ex-
plained in terms of the methylation of intermediary 9,10-distan-
naanthracene dianion 3.

The reaction of 1 with lithium was monitored by NMR.
Compound 1 (45mg, 0.066mmol) and excess lithium in THF
were placed in an NMR tube with C6D6 for NMR lock. After
ultrasonication, the color of the solution changed to deep red.
The 119SnNMR signal attributable to 9,10-distannaanthracene
dianion 3 (�254:9 ppm) with 3J(119Sn–117Sn) of 559Hz ap-
peared in upper field than that for 1 (�149:1 ppm in CDCl3).
A minor signal (<1/10) was observed at �220:0 ppm, possibly
due to a conformational or stereoisomer of 3, the structure of
which is still unclear.11 In 13CNMR, the �-carbon of 3 in the
six-membered ring resonated in the characteristic lowfield
(171.71 ppm) as observed in arylstannyl anions.12–14

Next, we examined the controlled reduction of 1 using lithi-
um naphthalenide (Scheme 2). After addition of lithium naph-
thalenide (0.66M in THF; 0.2mL, 0.13mmol, 2.5 equiv.) to a
THF (2mL) solution of 1 (36mg, 0.05mmol) at �80 �C, the

color of the solution turned to yellow. After the mixture was
warmed to room temperature, the residue was chromatographed
to give 9,10-distannaanthracene dimer 4,15 a tin analog of the
anthracene dimer, in 78% yield. The 1H, 13C, and 119SnNMR
signals for 4 have two sets of coupling satellites resulting from
an Sn–Sn bond.

The structure of 4 was finally established by X-ray analysis
(Figure 1).16 Because of the symmetrical structures of 4 with
respect to the Sn–Sn bond, half of each moiety was refined.
The central six-membered ring has a boat conformation and
hence the tricylic framework has a butterfly conformation with
the dihedral angle C(1)–Sn(1)–Sn(2)–C(7) of 122�, which is
the narrowest among those of 9,10-dihydro-9,10-distannaanthra-
cene derivatives.7 The length of the Sn–Sn bond (2.7836(5) �A) is
in the normal range.17

The formation of 4 could be reasonably interpreted as the re-
sult of the reaction of dianion 3 with the starting 1 (Scheme 3).
Alternatively, monoanion 5 may be coupled with each other to
give 4.
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Figure 1. ORTEP drawing of 4 with thermal ellipsoids plots
(40% probability for mono-hydrogen atoms). A chloroform
molecule was omitted for clarity. Selected bond lengths ( �A)
and angles (deg): Sn(1)A–Sn(2)B, 2.7836(5), Sn(1)A–C(13),
2.148(6), Sn(1)A–C(1), 2.168(5), Sn(1)A–C(12), 2.155(5);
C(1)–Sn(1)A–C(12), 99.9(2).
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